
A Book Chapter

By Narendra Kumar Chahar

on Vectors, Arrays and Union

Index:

Chapter Chapter Name Page No.

1.

2.

3. Vectors, Arrays and Union 2-13

1

Chapter 3

Vectors, Arrays and Union

Vectors:

In computing, sequence containers refer to a group of container class templates in
the standard library of the C++ programming language that implement storage of
data elements. Being templates, they can be used to store arbitrary elements, such as
integers or custom classes. One common property of all sequential containers is that
the elements can be accessed sequentially. Like all other standard library
components, they reside in namespace std.

The following containers are defined in the current revision of the C++
standard: array, vector, list, forward_list, deque. Each of these containers implement
a different algorithms for data storage, which means that they have different speed
guarantees for different operations.

 array implements a compile-time non-resizable array.
 vector implements an array with fast random access and an ability to

automatically resize when appending elements.
 Deque implements a double-ended queue with comparatively fast random

access.
 list implements a doubly linked list.
 forward_list implements a singly linked list.

Since each of the containers needs to be able to copy its elements in order to function
properly,the type of the elements must
fulfillCopyConstructible and Assignable requirements. For a given container all
elements must belong to the same type. For instance, one cannot store data in the
form of both char and int within the same container instance.

Properties

array, vector and deque all support fast random access to the elements. list supports
only bidirectional iteration, whereas forward_list supports only unidirectional
iteration.

array does not support element insertion or removal. vector supports fast element
insertion or removal at the end. Any insertion or removal of an element not at the
end of the vector needs elements between the insertion position and the end of the
vector to be copied. The iterators to the affected elements are thus invalidated. In
fact, any insertion can potentially invalidate all iterators. Also, if the allocated
storage in the vector is too small to insert elements, a new array is allocated, all
elements are copied or moved to the new array, and the old array is
freed. deque, list and forward_list all support fast insertion or removal of elements
anywhere in the container. list and forward_listpreserves validity of iterators on such

2

operation, whereas deque invalidates all of them.

Vector

The elements of a vector are stored contiguously. Like all dynamic
array implementations, vectors have low memory usage and good locality of
reference and data cache utilization. Unlike other STL containers, such
as deques and lists, vectors allow the user to denote an initial capacity for the
container.

Vectors allow random access; that is, an element of a vector may be referenced in the
same manner as elements of arrays (by array indices). Linked-lists and sets, on the
other hand, do not support random access or pointer arithmetic.

The vector data structure is able to quickly and easily allocate the necessary memory
needed for specific data storage. This is particularly useful for storing data in lists
whose length may not be known prior to setting up the list but where removal (other
than, perhaps, at the end) is rare. Erasing elements from a vector or even clearing the
vector entirely does not necessarily free any of the memory associated with that
element.

Capacity and reallocation

A typical vector implementation consists, internally, of a pointer to a dynamically
allocated array, and possibly data members holding the capacity and size of the
vector. The size of the vector refers to the actual number of elements, while the
capacity refers to the size of the internal array.

When new elements are inserted, if the new size of the vector becomes larger than its
capacity, reallocation occurs. This typically causes the vector to allocate a new
region of storage, move the previously held elements to the new region of storage,
and free the old region.

Because the addresses of the elements change during this process, any references
or iterators to elements in the vector become invalidated. Using an invalidated
reference causes undefined behaviour.

The reserve() operation may be used to prevent unnecessary reallocations. After a
call to reserve(n), the vector's capacity is guaranteed to be at least n.

The vector maintains a certain order of its elements, so that when a new element is
inserted at the beginning or in the middle of the vector, subsequent elements are
moved backwards in terms of their assignment operator or copy constructor.
Consequently, references and iterators to elements after the insertion point become
invalidated.

C++ vectors do not support in-place reallocation of memory, by design; i.e., upon
reallocation of a vector, the memory it held will always be copied to a new block of
memory using its elements' copy constructor, and then released. This is inefficient
for cases where the vector holds plain old data and additional contiguous space

3

beyond the held block of memory is available for allocation.

Specialization for bool

The Standard Library defines a specialization of the vector template for bool. The
description of this specialization indicates that the implementation should pack the
elements so that every bool only uses one bit of memory. This is widely considered a
mistake. vector<bool> does not meet the requirements for a C++ Standard
Librarycontainer. For instance, a container<T>::reference must be a true lvalue of
type T. This is not the case with vector<bool>::reference, which is a proxy
classconvertible to bool.[11] Similarly, the vector<bool>::iterator does not yield
a bool& when dereferenced. There is a general consensus among the C++ Standard
Committee and the Library Working Group that vector<bool> should be deprecated
and subsequently removed from the standard library, while the functionality will be
reintroduced under a different name.

Array:

In computer science, array programming languages (also known
as vector or multidimensional languages) generalize operations on scalars to apply
transparently to vectors, matrices, and higher dimensional arrays.

Array programming primitives concisely express broad ideas about data
manipulation. The level of conciseness can be dramatic in certain cases: it is not
uncommon to find array programming language one-liners that require more than a
couple of pages of Java code.[1]

APL, designed by Ken Iverson, was the first programming language to provide array
programming capabilities. The mnemonic APL refers to the title of his seminal book
"A Programming Language" and not to arrays per se. Iverson's contribution to rigor
and clarity was probably more important than the simple extension of dimensions to
functions.

Concepts

The fundamental idea behind array programming is that operations apply at once to
an entire set of values. This makes it a high-level programming model as it allows
the programmer to think and operate on whole aggregates of data, without having to
resort to explicit loops of individual scalar operations.

Iverson described the rationale behind array programming (actually referring to
APL) as follows:

most programming languages are decidedly inferior to mathematical notation and are
little used as tools of thought in ways that would be considered significant by, say,
an applied mathematician.

The thesis is that the advantages of executability and universality found in
programming languages can be effectively combined, in a single coherent language,
with the advantages offered by mathematical notation. It is important to distinguish

4

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Kenneth_E._Iverson
http://en.wikipedia.org/wiki/APL_programming_language
http://en.wikipedia.org/wiki/Array_programming#cite_note-1
http://en.wikipedia.org/wiki/One-liner_program
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Vector_(geometric)
http://en.wikipedia.org/wiki/Scalar_(computing)

the difficulty of describing and of learning a piece of notation from the difficulty of
mastering its implications. For example, learning the rules for computing a matrix
product is easy, but a mastery of its implications (such as its associativity, its
distributivity over addition, and its ability to represent linear functions and geometric
operations) is a different and much more difficult matter.

Indeed, the very suggestiveness of a notation may make it seem harder to learn
because of the many properties it suggests for explorations.

Users of computers and programming languages are often concerned primarily with
the efficiency of execution of algorithms, and might, therefore, summarily dismiss
many of the algorithms presented here. Such dismissal would be short-sighted, since
a clear statement of an algorithm can usually be used as a basis from which one may
easily derive more efficient algorithm.

The basis behind array programming and thinking is to find and exploit the
properties of data where individual elements are similar and/or adjacent. Unlike
object orientation which implicitly breaks down data to its constituent parts
(or scalar quantities), array orientation looks to group data and apply a uniform
handling.

Function rank is an important concept to array programming languages in general,
by analogy to tensor rank in mathematics: functions that operate on data may be
classified by the number of dimensions they act on. Ordinary multiplication, for
example, is a scalar ranked function because it operates on zero-dimensional data
(individual numbers). The cross product operation is an example of a vector rank
function because it operates on vectors, not scalars. Matrix multiplication is an
example of a 2-rank function, because it operates on 2-dimensional objects
(matrices). Collapse operators reduce the dimensionality of an input data array by
one or more dimensions. For example, summing over elements collapses the input
array by 1 dimension.

Languages

The canonical examples of array programming languages are APL, J, and Fortran. Others
include: A+, IDL, K, Q, Mathematica, MATLAB, MOLSF, NumPy, GNU
Octave, PDL, R,S-Lang, SAC, Nial and ZPL.

Scalar languages

In scalar languages like C, C# and Pascal, etc. operations apply only to single values,
so a+b expresses the addition of two numbers. In such languages adding two arrays requires
indexing and looping, which is tedious and error prone.

for (i = 0; i < n; i++)

5

 for (j = 0; j < n; j++)

 a[i][j] += b[i][j];

Union:

Unions Types

•A union is a type whose variables are allowed to store different type values at
different times during execution

•Design issues

–Should type checking be required?

–Should unions be embedded in records?

Discriminated vs. Free Unions

•Fortran, C, and C++ provide union constructs in which there is no language support
for type checking; the union in these languages is called free union

•Type checking of unions require that each union include a type indicator called a
discriminated.

–Supported by Ada

Ada Union Types

type Shape is (Circle, Triangle, Rectangle);

type Colors is (Red, Green, Blue);

type Figure (Form: Shape) is record

Filled: Boolean;

Color: Colors;

case Form is

when Circle => Diameter: Float;

when Triangle =>

Leftside, Rightside: Integer;

6

Angle: Float;

when Rectangle => Side1, Side2: Integer;

end case;

end record;

Ada Union Type Illustrated

Evaluation of Unions

•Free unions are unsafe

–Do not allow type checking

•Java and C# do not support unions

–Reflective of growing concerns for safety in programming language •Ada‘s
discriminated unions are safe.

7

References:

[1]. Swierstra, Wouter. "Data types à la carte." Journal of functional programming
18.4 (2008): 423-436.
[2]. Guttag, John V., and James J. Horning. "The algebraic specification of abstract
data types." Acta informatica 10.1 (1978): 27-52.
[3]. Pavlidis, Paul, et al. "Learning gene functional classifications from multiple data
types." Journal of computational biology 9.2 (2002): 401-411.
[4]. Bruce, Kim B. "Safe type checking in a statically-typed object-oriented
programming language." Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 1993.
[5]. Cardelli, Luca. "Basic polymorphic typechecking." Science of computer
programming 8.2 (1987): 147-172.
[6]. Mössenböck, Hanspeter, and Niklaus Wirth. "The programming language
Oberon-2." Structured Programming 12.4 (1991): 179-196.
[7]. Igarashi, Atsushi, and Hideshi Nagira. "Union types for object-oriented
programming." Proceedings of the 2006 ACM symposium on Applied computing.
2006.
[8]. Griesemer, Robert. A Programming Language for Vector Computers.
Eidgenössische Technische Hochschule [ETH] Zürich, 1993.

8

	Properties
	Vector
	Capacity and reallocation
	Specialization for bool

	Concepts

